首页> 外文OA文献 >Development and Evaluation of Two Learning-Based Personalized Driver Models for Car-Following Behaviors
【2h】

Development and Evaluation of Two Learning-Based Personalized Driver Models for Car-Following Behaviors

机译:两种学习型个性化驾驶员的发展与评价   汽车行为的模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Personalized driver models play a key role in the development of advanceddriver assistance systems and automated driving systems. Traditionally,physical-based driver models with fixed structures usually lack the flexibilityto describe the uncertainties and high non-linearity of driver behaviors. Inthis paper, two kinds of learning-based car-following personalized drivermodels were developed using naturalistic driving data collected from theUniversity of Michigan Safety Pilot Model Deployment program. One model isdeveloped by combining the Gaussian Mixture Model (GMM) and the Hidden MarkovModel (HMM), and the other one is developed by combining the Gaussian MixtureModel (GMM) and Probability Density Functions (PDF). Fitting results betweenthe two approaches were analyzed with different model inputs and numbers of GMMcomponents. Statistical analyses show that both models provide good performanceof fitting while the GMM--PDF approach shows a higher potential to increase themodel accuracy given a higher dimension of training data.
机译:个性化的驾驶员模型在高级驾驶员辅助系统和自动驾驶系统的开发中起着关键作用。传统上,具有固定结构的基于物理的驾驶员模型通常缺乏描述驾驶员行为的不确定性和高度非线性的灵活性。本文使用从密歇根大学安全驾驶员模型部署计划收集的自然驾驶数据开发了两种基于学习的汽车跟随个性化驾驶员模型。一种模型是通过结合高斯混合模型(GMM)和隐马尔可夫模型(HMM)来开发的,另一种是通过结合高斯混合模型(GMM)和概率密度函数(PDF)来开发的。使用不同的模型输入和GMM组件数量分析了两种方法之间的拟合结果。统计分析表明,这两种模型均具有良好的拟合性能,而GMM-PDF方法在给定较大训练数据维度的情况下显示出更高的潜力来提高模型的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号